Comparación de métodos para encontrar raíces

Método Tipo Requisitos Riesgos Convergencia Ventajas Desventajas Tolerancia al error Tipo de raíces que encuentra Cuántas raíces encuentra
Bisección cerrado Se debe saber de antemano un intervalo en donde la función contiene una raíz, además, la función debe ser continua en un intervalo de busqueda [a, b] Ninguno si se cumple con los requisitos previos Si se cumple con los requisitos previos se garantiza su convergencia Es mucho más seguro que otros métodos en el sentido de que garantiza la convergencia Es menos eficiente que el método de Newton-Raphson Se usa el error absoluto Reales Una
Newton-Raphson abierto Sólo requiere un valor de inicio x y la derivada de la función A veces diverge o se aleja de la raíz verdadera a medida que se avanza en el cálculo. Con base en la serie de Taylor, tenemos que la velocidad de la convergencia está expresada por E_{i+1} = O(E_{i^2}); de esta manera el error debe de ser proporcional al cuadrado del error anterior Cuando sí converge, lo hacen mucho más rápido que los métodos cerrados en el caso de raíces múltiples e inclusive en raíces simples se nos pueden llegar a presentar algunas dificultades, como por ejemplo convergencia lenta o casos en el que un punto de inflexión* se encuentra en la vecindad de una raíz Se usa el error iterativo Reales Una
Secante abierto necesitamos conocer las dos aproximaciones anteriores la convergencia no se asegura si la primera aproximación a la raíz no es lo suficientemente cercana a ella, ni tampoco se asegura cuando la raíz es múltiple el orden de convergencia en un punto cercano a la solución es φ (número áureo). En caso de que la aproximación inicial sea demasiado lejana o la raíz no sea simple, este método no asegura la convergencia No se necesita el calculo de la derivada Su velocidad de convergencia es menor al de otros métodos abiertos Se usa el error iterativo Reales Una
Bairstow Abierto La función debe ser un polinomio. Los polinomios de grado muy alto o impar con multiplicidad total a una raíz pueden hacer que el método falle o que el resultado no sea tan exacto. Si se utiliza Newton-Raphson para calcular las raíces, es cuadrática. Puede encontrar todas las raíces de una función si se trata de un polinomio. No funciona con funciones trigonométricas o exponenciales. Gran tolerancia al error, no se indetermina con tanta facilidad como otros métodos, y en casos de polinomios de muy alto grado, da resultados aceptables. Reales y complejas Dependiendo de la implementación, puede llegar a calcular desde dos hasta n raíces que tenga el polinomio
Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s